Systems of word equations, polynomials and linear algebra: A new approach
نویسنده
چکیده
We develop a new tool, namely polynomial and linear algebraic methods, for studying systems of word equations. We illustrate its usefulness by giving essentially simpler proofs of several hard problems. At the same time we prove extensions of these results. Finally, we obtain the first nontrivial upper bounds for the fundamental problem of the maximal size of independent systems. These bounds depend quadratically on the size of the shortest equation. No methods of having such bounds have been known before.
منابع مشابه
Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملNumerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...
متن کاملA new approach to solve fuzzy system of linear equations by Homotopy perturbation method
In this paper, we present an efficient numerical algorithm for solving fuzzy systems of linear equations based on homotopy perturbation method. The method is discussed in detail and illustrated by solving some numerical examples.
متن کاملThe Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients
In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...
متن کاملA new approach for solving the first-order linear matrix differential equations
Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 47 شماره
صفحات -
تاریخ انتشار 2015